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Abstract
If we could define the set of all bad outcomes, we could hard-code an agent which avoids them;
however, in sufficiently complex environments, this is infeasible. We do not know of any general-
purpose approaches in the literature to avoiding novel failure modes. Motivated by this, we define
an idealized Bayesian reinforcement learner which follows a policy that maximizes the worst-case
expected reward over a set of world-models. We call this agent pessimistic, since it optimizes
assuming the worst case. A scalar parameter tunes the agent’s pessimism by changing the size of the
set of world-models. Our first main contribution is: given an assumption about the agent’s model
class, a sufficiently pessimistic agent does not cause “unprecedented events” with probability 1−δ,
whether or not designers know how to precisely specify those precedents they are concerned with.
Since pessimism discourages exploration, at each timestep, the agent may defer to a mentor, who
may be a human or some known-safe policy we would like to improve. Our other main contribution
is that the agent’s policy’s value approaches at least that of the mentor, while the probability of
deferring to the mentor goes to 0. In high-stakes environments, we might like advanced artificial
agents to pursue goals cautiously, which is a non-trivial problem even with arbitrary computing
power; we present a formal solution.

1. Introduction

Intuitively, there are contexts in which we would like advanced agents to be conservative: novel
action-sequences should be treated with caution, and only taken when the agent is quite sure its
world-model generalizes well to this untested new idea. For a weak agent in a simple environment,
the following approach may suffice: model the environment as finite-state Markov, observe a men-
tor, and only take actions that you have already observed the mentor take from the current state. But
in a complex environment, one never or hardly ever sees the exact same state twice; even worse, if
the environment is non-stationary, a previous observation of the mentor taking action a from state s
does not imply it is still safe to do so.

We construct an idealized Bayesian reinforcement learner. We do not assume our agent’s en-
vironment is finite-state Markov or ergodic. We will only assume that our agent’s environment,
which may depend on the entire interaction history, belongs to a countable set M. For example,
the countable set of semicomputable stochastic world-models would be large enough to make this
assumption innocuous (Hutter, 2005). The limit of this idealization is that because we make so few
assumptions, we can’t ensure that computing the posterior is tractable in the general setting.
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PESSIMISM

Our agent also has a mentor, who can select an action when the agent requests, and we assume
nothing about the agent’s mentor besides belonging to a countable set of possible policies P . The
mentor could be a human or a known-safe policy.

Our agent starts with a prior that assigns non-zero probability to a countable set of world-models
M and mentor-models P , and recursively updates a posterior. At each timestep, it stochastically
defers to a mentor with some probability, and the mentor selects the action on its behalf; otherwise, it
takes the top world-models in its posterior until they cover some fixed fraction β of the posterior, and
it follows a policy which maximizes the minimum expected return among those top world-models.
We call this minimum the pessimistic value because it is a worst-case estimate. At each timestep,
to decide whether to defer action-selection to the mentor, the agent samples a world-model and
mentor-model from its posterior; the agent calculates the value of acting according to that mentor-
model in that world-model given the current interaction history, and if that value is greater than
the pessimistic value plus positive noise, or if the pessimistic value is 0, the agent defers. This
query probability is inspired by the effectiveness of Thompson Sampling (Thompson, 1933) as an
exploration strategy.

We show

• In the limit, the pessimistic agent’s policy’s value approaches at least that of the mentor’s.
(Corollary 6)
• The mentor is queried with probability approaching 0 as t→∞. (Corollary 7)
• For any complexity class C, we can setM so that for any event E in the class C, we can set
β so that with arbitrarily high probability: for the whole lifetime of the agent, if the event E
has never happened before, the agent will not make it happen. Either the mentor will take an
action on the agent’s behalf which makes E happen for the first time, or E will never happen.
(Theorem 11)

We call the last point the Probably Respecting Precedent Theorem. The “precedent” is that
a certain event has never happened, and the agent probably never takes an action which disrupts
that precedent for the first time. For any failure mode that designers do not know how to specify
formally, the agent can be made to probably not fail that way. The price of this is intractability, but
tractable approximations of pessimism may preserve these results in practice, or perhaps even in
theory.

Section 2 introduces notation, Section 3 reviews related work, we define the agent’s policy in
Section 4, and we prove performance results and safety results in Sections 5 and 6. Appendix A
collects definitions and notation, Appendix B presents an algorithm for an ε-approximation of the
agent’s policy, and Appendix C contains omitted proofs.

2. Notation

Let A, O, and R be finite sets of possible actions, observations, and rewards. Let {0, 1} ⊂ R ⊂
[0, 1]. Let H = A×O×R. For each timestep t ∈ N, at, ot, and rt denote the action, ob-
servation, and reward, and ht denotes the triple. A policy π can depend on the entire history so
far. We denote this history (h1, h2, ..., ht−1) as h<t. Policies may be stochastic, outputting a dis-
tribution over actions. Thus, π : H∗  A, where H∗ =

⋃∞
i=0Hi, and  means the function

may be stochastic. Likewise, in general, a world-model ν : H∗ × A  O×R may be stochas-
tic, and it may depend on the entire interaction history. The latter possibility allows (the agent to
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PESSIMISM

conceive of) environments which are not finite-state Markov. A policy π and a world-model ν in-
duce a probability measure Pπν over infinite interaction histories. This is the probability of events
when actions are sampled from π and observations and rewards are sampled from ν. Formally,
Pπν (h≤t) =

∏t
k=1 π(ak|h<k)ν(okrk|h<kak). We use general, history-based world-models, with no

assumptions on ν ∈ M, even though they present complications that finite-state Markov, ergodic
world-models do not.

The agent will maintain a belief distribution over a class of world-models M. We allow this
to be an arbitrary countable set. A prime example, the set of semicomputable stochastic world-
modelsMCOMP (Hutter, 2005), is only countable, but large enough. The agent starts with a prior
belief w(ν) that the world-model ν ∈ M is the true environment (w is for “weight”). Naturally,∑

ν∈Mw(ν) = 1. The agent updates its belief distribution according to Bayes’ rule, which we write
as follows: w(ν|h<t) :∝ w(ν)

∏t−1
k=1 ν(okrk|h<kak), normalized so that

∑
ν∈Mw(ν|h<t) = 1.

Let µ be the true environment. We assume µ ∈M, and we assume the true observed rewards are at
least ε > 0.

For an agent with a discount factor γ ∈ [0, 1), and a policy π, given a world-model ν, and an
interaction history h<t, the value of that policy from that position in that world is

V π
ν (h<t) := (1− γ)Eπν

[ ∞∑
k=t

γk−trk

∣∣∣∣∣h<t
]

(1)

where Eπν is the expectation under the probability measure Pπν . The factor of 1 − γ normalizes the
value to [0, 1] for convenience.

3. Related Work

Virtually all previous work that attempts to make reinforcement learners avoid unspecified failure
modes assumes a finite-state Markov environment. We do not, but the literature is nonetheless
informative for our general setting.

Heger (1994) defines Q̂-learning, which maximizes the worst-case return for a known MDP, and
Jiang et al. (1998) extend the case to unknown MDPs. As Garcı́a and Fernández (2015) describe,
Gaskett (2003) found empirically that such extreme pessimism is more harmful than helpful. Gas-
kett (2003) introduces a variant on the Q-value, which is the value of an action under the assumption
that at each future timestep, with some probability, the worst action will be taken, instead of the best
one; they test this empirically.

Closer to our approach, Iyengar (2005) and Nilim and El Ghaoui (2005) construct a policy which
is robust to errors in the transition probabilities by considering the worst-case return within some
error tolerance. Much of the work on the topic takes the form of presenting a tractable approach to
the execution of this robust policy, e.g. Tamar et al. (2013). Unfortunately, this research assumes
access to an MDP with (approximately) known transition probabilities—at first glance this seems
like something an agent might reasonably have access to after limited observations, but the MDPs
are assumed to be uniformly approximately known, which requires exploration, and indeed requires
observing every “failure” state that the robust policies are supposed to avoid. The finite-state Markov
assumption their work makes is useful for many circumstances, but advanced agents may have to
conceive of non-stationarity in the environment, and importantly for our purposes, novel failure
modes.

3



PESSIMISM

Other work makes use of a mentor to avoid “dangerous” states (whereas in our work, the mentor
lower-bounds the capability of the agent, and robustness derives from pessimism). Imitation learn-
ing (Abbeel and Ng, 2004; Ho and Ermon, 2016; Ross et al., 2011) makes the most of a mentor in
the absence of other feedback, like rewards. An abundance of “ask for help” algorithms query a
mentor under conditions which correspond to some form of uncertainty (Clouse, 1997; Hans et al.,
2008; Garcı́a and Fernández, 2012; Garcı́a et al., 2013). Kosoy (2019) gives a regret bound for
an agent in a (non-ergodic) MDP, given access to an expert mentor and a finite set of models that
contains the truth. Garcı́a and Fernández (2015, Section 4.1.3.2) review many protocols by which a
mentor monitors the state and intervenes at will through various channels, and Saunders et al. (2018)
is another more recent example. One risk of relying on mentor-intervention to protect against crit-
ical failure is that a mentor may not recognize action sequences which lead to critical failure, even
if we would trust a mentor not to wander into those failure modes by virtue of their complexity.

Sunehag and Hutter’s (2015) optimistic agent directly inspired this work; optimism is designed
to be an exploration strategy. Hutter’s (2005) formulation of universal artificial intelligence is the
basic theoretical framework we use here to analyze idealized artificial agents. Technically, our
work borrows most from Hutter’s (2009), Leike et al.’s (2016), and Cohen et al.’s (2020) work on
Bayesian agents with general countable model-classes.

4. Agent Definition

We now define the pessimistic policy and the probability with which the agent defers to a mentor.
We define the agent’s policy mathematically here, and we write an algorithm in Appendix B.

4.1. Pessimism

β ∈ (0, 1) will tune the agent’s pessimism. If, for example, β = 0.95, we say that the agent is
95% pessimistic. Such an agent will restrict attention to a set of world-models that covers 95% of
its belief distribution, and act to maximize expected reward in the worst-case scenario among those
world-models. Formally, let νk be the world-model inM with the kth largest posterior weight, and
let T k be the top-k most probable world-models, defined as follows:

T 0(h<t) := ∅ (2)

νk(h<t) := argmax
ν∈M\T k−1(h<t)

w(ν|h<t) (3)

T k(h<t) := T k−1(h<t) ∪ {νk(h<t)} (4)

Ties in the argmax are broken arbitrarily (as everywhere else in the paper). Then,

kβt := min

k ∈ N

∣∣∣∣∣ ∑
ν∈T k(h<t)

w(ν|h<t) > β

 (5)

Mβ
t := T

kβt
(h<t) (6)

Note that kβt andMβ
t both depend on h<t, not just t, and note thatMβ

t satisfies∑
ν∈Mβ

t

w(ν|h<t) > β (7)
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The β-pessimistic policy is defined as follows:

πβt := argmax
π∈Π

min
ν∈Mβ

t

V π
ν (h<t) (8)

πβ(·|h<t) := πβt (·|h<t) (9)

Π is the set of all deterministic policies, and some deterministic policy will always be optimal
(Lattimore and Hutter, 2014). The connection to the minimax approach in game theory is inter-
esting: from Equation 8, it looks as though the pessimistic agent believes there is an adversary in
the environment. Our policy is inspired by Sunehag and Hutter’s (2015) optimistic agent, in which
the min is replaced with a max, and Mβ

t is replaced with an arbitrary finite subset of the model
class. Whereas the purpose of optimism is to encourage exploration, the purpose of pessimism is to
discourage novelty.

4.2. The Mentor

Since pessimism discourages exploration, we introduce a mentor to demonstrate a policy. We sup-
pose that at any timestep, the agent may defer to a mentor, who will then select the action on the
agent’s behalf. Thus, the agent can choose to follow the mentor’s policy πm, not by computing it,
but rather by querying the mentor. πm may be stochastic. What remains to be defined is when the
agent queries the mentor.

The agent maintains a posterior distribution over a set of mentor-models. Each mentor-model
is a policy π ∈ P , an arbitrary countable set, and let w′(π) be the prior probability that the agent
assigns to the proposition that the mentor samples actions from π. Letting qk = 1 if the agent
queried the mentor at timestep k, and letting qk = 0 otherwise, the posterior belief w′(π|h<t) :∝
w′(π)

∏
k<t:qk=1 π(ak|h<k).

At timestep t, the agent follows the following procedure to determine whether to query the
mentor. π ∼ w′(·|h<t). ν ∼ w(·|h<t). Sampling from a posterior is often called Thompson
Sampling (Thompson, 1933). Xt := V π

ν (h<t). Yt := maxπ∈Π min
ν∈Mβ

t
V π
ν (h<t). Let Zt > 0 be

an i.i.d. random variable such that for all ε > 0, p(Zt < ε) > 0, e.g. Zt ∼ Uniform((0, 2]). If
Xt > Yt + Zt, or if Yt = 0, the agent defers to the mentor. For ease of analysis, we also require
p(Zt > 1) > 0. The greater the possibility that the mentor can accrue much more reward, the higher
the probability of deferring.

When Yt = 0, we call this the “zero condition.” Our earlier assumption that the true observed
rewards be at least ε > 0 is to ensure the zero condition only happens finitely often. The agent will
still consider it possible to get zero reward, but it will never actually observe such a thing. Let θt
denote the probability that qt = 1 and the agent defers to the mentor; note that θt depends on the
whole history, not just t.

The pessimistic agent’s policy, which mixes between πβ (from Eqn. 9) and πm according to its
query probability, is denoted πβZ ; that is, πβZ(·|h<t) := θtπ

m(·|h<t) + (1− θt)πβ(·|h<t).

5. Performance Results

We now present our first contribution: we show that value of the agent’s policy will at least approach,
and perhaps exceed, the value of the mentor’s policy. We also show that the probability of querying
the mentor approaches 0. In the next section, we will prove results regarding the safety of the agent.
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We begin with a lemma regarding Bayesian sequence prediction: the β-maximum a posteriori
models—that is, the minimal set of models that amount to at least β of the posterior—all “merge”
with the true world-model. We require some new notation to define this formally.

Let x<∞ ∈ X∞; that is, it is an infinite string from a finite alphabet X . Let x<t be the first t−1
characters of x<∞. We consider probability measures over the outcome space Ω = X∞, with the
standard event space being the σ-algebra of cylinder sets: F = σ({{x<ty|y ∈ X∞}|x<t ∈ X ∗}).
We abbreviate x<∞ as ω. We will consider a countable class of probability measures over this space
M = {Qi}i∈N. One such probability measure will be denoted P (the true sampling one), and Q
will denote an arbitrary probability measure over X∞.

We will write P (x<t) to mean the probability that the infinite string ω begins with x<t; so
technically, it is shorthand for P ({x<ty|y ∈ X∞}). By P (x′|x<t) (for x′ ∈ X ∗), we mean
P (x<tx

′)/P (x<t), that is, the probability that x′ follows x<t. We begin with prior weights over
Q ∈M, denoted w(Q) > 0, and satisfying

∑
Q∈Mw(Q) = 1, and we let the posterior weight be

w(Q|x<t) :=
w(Q)Q(x<t)∑

Q′∈Mw(Q′)Q′(x<t)
(10)

ForM′ ⊂M, we also define w(M′ |·) =
∑

Q∈M′ w(Q|·).
The k-step variation distance between P and Q is how much they can possibly differ on the

probability of what the next k characters might be (Hutter, 2005).

Definition 1 (k-step variation distance)

dk(P,Q|x<t) = max
E⊂Xk

∣∣P (E|x<t)−Q(E|x<t)
∣∣

Definition 2 (Total variation distance)

d(P,Q|x<t) = lim
k→∞

dk(P,Q|x<t)

which exists because dk(P,Q|x<t) is non-decreasing and bounded by 1.
Inspired by Blackwell and Dubins (1962), the following lemma may interest some Bayesians

more than any of our theorems. DefiningMβ
t exactly as before (see Equations 2 - 6), but forQ ∈M

instead of for ν ∈M, and conditioning on x<t instead of h<t,

Lemma 3 (Merging of Top Opinions) For β ∈ (0, 1), limt→∞max
Q∈Mβ

t
d(P,Q|x<t) = 0 with

P -probability 1 (i.e. when x<∞ = ω ∼ P ).

Unless otherwise specified, all limits in this paper are as t → ∞. This lemma requires a few
lemmas that are stated and proven in Appendix C. Lemma 20 is a beautiful one that we feel should
be known, but we couldn’t find it in the literature. It says the sum of the limits of posterior weights
is 1, a.s.:

∑
Q∈M limw(Q|x<t) = 1 with P -prob.1, for P ∈ M. The others are short results from

recent papers; we restate them there and re-prove them when feasible to save the reader the trouble of
translating notation and verifying that those results apply to our current problem. Roughly, Lemma
3 holds because when a true model has positive prior weight, all models either merge with the truth
or have their posterior weight go to 0, so eventually, all top models must merge; but the set of
top models changes with each observation, and limits require care, so it ends up being somewhat
involved.
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Proof Let Ω0
Q = {ω ∈ Ω | limw(Q|x<t) = 0}. Let Ω→PQ = {ω ∈ Ω | lim d(P,Q|x<t) = 0}.

Let Ω0∨→P
Q = Ω0

Q ∪ Ω→PQ . By Lemma 18, P [Ω0∨→P
Q ] = 1. Letting Ω0∨→P =

⋂
Q∈MΩ0∨→P

Q ,
P [Ω0∨→P ] = 1. Let Ω∃ = {ω ∈ Ω

∣∣ ∀Q ∈ M limw(Q|x<t) exists}. Let Ω=1 = {ω ∈
Ω∃
∣∣ ∑

Q∈M limw(Q|x<t) = 1}. By Lemma 20, P [Ω=1] = 1. Letting Ω′′ = Ω0∨→P ∩ Ω=1, we
have that P [Ω′′] = 1.

Let ω ∈ Ω′′. We abbreviate limw(Q|x<t) as w(Q|ω), defined for ω ∈ Ω′′. Rank the probability
measures Q in decreasing order of w(Q|ω) breaking ties arbitrarily. Collect the first k in this order
until the set of probability measures (denoted Mβ

∞) obeys
∑

Q∈Mβ
∞
w(Q|ω) > β. Let wβ∞ :=

min
Q∈Mβ

∞
w(Q|ω) be the value of w(Q|ω) for the last probability measure Q which was added to

Mβ
∞. Now add all other probability measures which “tie” with the last probability measure added.

That is, add toMβ
∞ all probability measures for which w(Q|ω) = wβ∞.

We now show that there exists a certain finite set and a t0 after which any probability mea-
sure in Mβ

t is also in that finite set. Consider the set of probability measures Mβ′
∞, where β′ =

1 − wβ∞/4. Like Mβ
∞, Mβ′

∞ is finite. Therefore, for any ε > 0, there exists a time t0 after
which w(Mβ′

∞ |x<t) >
∑

Q∈Mβ′
∞
w(Q|ω) − ε, and in particular for ε = wβ∞/4. Thus, after t0,

w(Mβ′
∞ |x<t) > β′ − wβ∞/4 = 1− wβ∞/2. This implies that after t0,

∀Q /∈Mβ′
∞ : w(Q|x<t) < wβ∞/2 (11)

Since all probability measures Q ∈ Mβ
∞ have posteriors converging to at least wβ∞, and since∑

Q∈Mβ
∞
w(Q|ω) > β, a posterior weight of at least wβ∞ − ε will eventually be required for entry

intoMβ
t , which excludes measures with posterior weight less than wβ∞/2, so by Inequality 11 there

exists a time t1 after whichMβ
t only includes elements ofMβ′

∞.
Because Ω0∨→P ⊃ Ω′′, and because for all Q ∈ Mβ′

∞, w(Q|ω) > 0, it follows that for all
Q ∈ Mβ′

∞, lim d(P,Q|x<t) = 0. Since Mβ′
∞ is finite, lim max

Q∈Mβ′
∞
d(P,Q|x<t) = 0. Since

there exists a time t1 after whichMβ
t ⊂ Mβ′

∞, lim max
Q∈Mβ

t
d(P,Q|x<t) = 0. This holds for all

ω ∈ Ω′′, and P [Ω′′] = 1, so lim max
Q∈Mβ

t
d(P,Q|x<t) = 0 with P -probability 1, as desired.

We now return to the probability space where infinite sequences are over the alphabet H, and
probability measures Pπν denote the probability when actions are sampled from a policy π and
observations and rewards are sampled from a world-model ν. Since πβZ is the agent’s policy, and µ

is the true environment, we will often abbreviate “with P
πβZ
µ -probability 1” as just “with probability

1” or “w.p.1”.
Further lemmas which depend on the Merging of Top Opinions Lemma are stated in Appendix

C. They are: with probability 1, on-policy prediction converges, the zero condition occurs only
finitely often, and “almost-on-policy prediction” converges, which is roughly that if the agent’s
policy mimics another policy πt with some uniformly positive probability some of the time, then on
those timesteps, on-πt-policy prediction converges to the truth. Formally,

Lemma 4 (Almost On-Policy Convergence) For a sequence of policies πt and an infinite set of

timesteps τ , the following holds with P
πβZ
µ -prob. 1: if there exists c > 0 such that ∀t ∈ τ ∀t′ ≥

t ∀a ∈ A πβZ(a|h<t′) ≥ cπt(a|h<t′), then limτ3t→∞ V
πt
µ (h<t)−min

ν∈Mβ
t
V πt
ν (h<t) = 0 and for

all k, limτ3t→∞max
ν∈Mβ

t
dk

(
Pπtν ,P

πt
µ

∣∣∣h<t) = 0.
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The proof is in Appendix C; if it didn’t hold, on-policy prediction error would be bounded below
at those timesteps τ . Our main performance results are corollaries of the following theorem.

Theorem 5 (Exploiting Surpasses Exploring)

lim inf w(ν|h<t)w′(π|h<t) > 0 =⇒ lim inf V πβ

µ (h<t)− V π
ν (h<t) ≥ 0 w.p.1

Informally, for any world-model/mentor-model pair that remains possible, the true value of
the pessimistic policy will be at least as high. A note on the proof: we will consider an infinite
interaction history which violates the theorem, follow implications that hold with probability 1, and
arrive at a contradiction. Strictly speaking, we are considering the set of infinite interaction histories
which violate the theorem and for which all the implications we employ are true. The resulting set
of infinite interaction histories will be ∅ once we arrive at a contradiction, so it will have probability
0. Since all implications used in the proof have probability 1 (and we only employ countably many
such implications), the negation of the theorem must also have probability 0 by countable additivity.
Since it is tedious to keep track of sets of outcomes for which each line in the proof holds, we simply
treat implications that hold with probability 1 as if they were true logical implications, but as we
have just argued, as long as this is not done uncountably many times, this is a valid style of proof.

Most of the proof is a lengthy proof by induction; we set up the proof by induction and outline
the remainder, which is completed in Appendix C.

Proof – Detailed Outline Fix an infinite interaction history h<∞. Suppose lim inf w(ν ′|h<t) ·
w′(π′|h<t) > 0. This implies inftw(ν ′|h<t)w′(π′|h<t) > 0, because if a posterior is ever 0, it
will always be 0. Let ν ′inf > 0 and π′inf > 0 denote those two infima. Let τ× = {t : V π′

ν′ (h<t) >

V πβ
µ (h<t) + 7ε}. Suppose by contradiction that |τ×| =∞ for some ε > 0.

The proof proceeds by induction. Let V π1k;π2
ν (h<t) denote the value of following π1 for k

timesteps, and following π2 thereafter. Let τ−1 = N, the set of all timesteps. Let α = max{β, 1−
ν ′inf/2}. For k ∈ N, tk and τk are defined inductively.

Let tk be a timestep after which maxν∈Mα
t
|V π′k;πβ
ν (h<t)− V π′k;πβ

µ (h<t)| < ε and maxν∈Mα
t

dk

(
Pπ
′
ν ,P

π′
µ

∣∣∣h<t) < ε for all t ∈ τk−1 (if such a timestep exists). Recalling θt is the query

probability, let τk be the set of timesteps t ∈ τk−1 ∧ t ≥ tk ∧ (∀t′ < k : θt+t′ ≥ ν ′infπ
′
infp(Zt+t′ <

ε)) ∧ V π′
ν′ (h<t+k) ≥ V πβ

µ (h<t+k) + 2ε. We also restrict τ0 ⊂ τ×. Now we show that t0 exists
with probability 1, and |τ0| = ∞ with probability 1, and if tk exists and |τk| = ∞, then with
probability 1, tk+1 exists and |τk+1| = ∞. We abbreviate the third condition of τk “A(t, k)”—the
query probability is bounded below for k timesteps starting at t.

The remainder of the proof is in Appendix C. The proof by induction roughly proceeds as
follows: from V π′

ν′ (h<t+k) ≥ V πβ
µ (h<t+k) + 2ε, we show the agent will explore again at time t+ k

with uniformly positive probability, so A(t, k + 1) holds. Then we can apply Lemma 4, and show
that πβZ > cπ′ for those k + 1-timestep intervals, so predictions regarding the next k + 1 timesteps
on-π′-policy converge to the truth (for those certain intervals), which implies tk+1 exists. Because
|τ×| =∞, V π′

ν′ must exceed V πβ
µ by 7ε infinitely often. The k+1-step convergence of π′ effectively

pushes back this value difference to mostly arise from events at least k + 1 steps in the future; if
rewards differed earlier, the pessimistic value of π′ would be higher than πβ , but πβ maximizes
the pessimistic value. The value difference “being pushed back” is captured as V π′

ν′ (h<t+k+1) ≥
V πβ
µ (h<t+k+1) + 2ε, which is the last step in the induction.
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But the value difference cannot be pushed back indefinitely. The exact form of the contradiction
is an implication of the inductive hypothesis: that γk+1 ≥ 3ε, but this cannot hold as k →∞. This
is our contradiction, after following implications that hold with probability 1, so the negation of the
theorem, which we supposed at the beginning, has probability 0.

Corollary 6 (Mentor-Level Performance) lim inf V πβ
µ (h<t)− V πm

µ (h<t) ≥ 0 w.p.1.

Thus, the pessimistic agent learns to accumulate reward at least as well as the mentor. This is
our main performance result. It is easy to construct environments where πβ surpasses πm (see, e.g.,
Theorem 15).
Proof By Lemma 25, inftw(µ|h<t)w′(πm|h<t) > 0, with probability 1. This satisfies the condition
of Theorem 5, so the implication holds with probability 1.

Corollary 7 (Limited Querying) θt → 0 w.p.1.

The proof is in Appendix C. The intuition is that the query probability is roughly the probability
that querying the mentor could yield much more value than acting pessimistically, and we know
from Corollary 6 that this probability goes to 0.

6. Safety Results

Roughly, we now show that for any event that has never happened before, a sufficiently pessimistic
agent probably does not unilaterally cause that event to happen.

For that result (roughly) the model class must contain models that can “detect” whether the event
in question occurs. Thus, we add some structure to the model class M: we assume M includes
all world-models in some complexity class. Let F and G be sets of functions mapping N → N.
CFG = TIME(F) ∩ SPACE(G). For example, if F =

⋃∞
k=0O(tk) and G = N→ N (the set of all

functions), then CFG = P.

Definition 8 (FCFG) FCFG is the set of environments ν for which there exists a program such that
given an infinite action sequence and access to infinite random bits,

• it outputs an infinite sequence of observations and rewards, distributed according to ν
• the tth observation and reward are output before the t+ 1th action is read
• for some f ∈ F and some g ∈ G, when the tth observation and reward have been output,

– the runtime is less than f(t)
– the space used is less than g(t)

We assume that the true environment µ ∈ M = FCFG . We assume F and G are closed under
addition, and F ⊃ O(t). By picking F and G, we can make our agent avoid “unprecedented
events” that belong to particular complexity classes.

Definition 9 (To Happen) For an event E ⊂ H∗ ×A, E happens at time t if h<tat ∈ E.

Definition 10 (To Have Happened) For E ⊂ H∗ × A, and for an interaction history h<tat, E
has happened if there exists a t′ ≤ t such that h<t′at′ ∈ E.

9
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Let E← denote the set of interaction histories for which E has happened. Let F/t = {f/t |f ∈
F}. We now present our main safety result:

Theorem 11 (Probably Respecting Precedent) Let E ⊂ H∗ ×A be an event for which the deci-
sion problem h<tat ∈? E is in the complexity class C(F/t)G . As β approaches 1, the probability of
the following event goes to 1: for all t, if at time t− 1, E has not happened, then E will not happen
at time t either, unless perhaps the mentor selects at. Formally, for some constant cE > 0,

E ∈ C(F/t)G =⇒ P
πβZ
µ [∀t (h<t−1at−1 /∈ E← =⇒ h<tat /∈ E ∨ qt = 1)] ≥ 1− 1− β

cEw(µ)

Suppose E is the set of interaction histories which cause some catastrophe, but we trust the
mentor not to cause this catastrophe, and we trust the catastrophe not to happen in the absence
of running this agent. Then the Probably Respecting Precedent Theorem implies that running a
sufficiently pessimistic agent will probably not cause this catastrophe—if it hasn’t happened yet,
the agent probably won’t make it happen, and if the mentor won’t make it happen, it probably won’t
ever happen. This holds even for catastrophes we can’t recognize immediately. Note also that the
latter possibility qt = 1 has diminishing probability by Corollary 7.

Proof idea Let µE be identical to the true world-model µ until the event E happens, at which
point, reward is zero forever according to that model. With high probability, the world-model µE
will always be included in Mβ

t if β is large enough. If E has never happened, this world-model
stays inMβ

t , and the pessimistic value (when µE is included) of causing the event E to happen is
0, which means that either some other action will be preferred, or the agent will defer to the mentor
if the pessimistic value of every action is 0.

Proof Let µE be the environment which mimics µ as long as E has not happened, and then if E
happens, rewards are 0 forever (and for the sake of precision, we say observations are unchanged, but
this doesn’t matter). That is, µE(otrt|h<tat) = µ(otrt|h<tat) if h<tat /∈ E←, and if h<tat ∈ E←,
µE(rt = 0|h<tat) = 1.

µ ∈ FCFG and E ∈ C(F/t)G . Consider a program which computes µE by running µ in f(t)
time and g(t) space, but also checks at every timestep whether h<tat ∈ E (and then switches to
outputting 0 reward if this ever happens), which requires only f ′(t)/t time and g′(t) space for some
f ′ ∈ F and g′ ∈ G. The total space requirements are now g(t) + g′(t) ∈ G because G is closed
under addition. The total time requirements are now f(t) +

∑t
k=1 f

′(k)/k. Because F ⊃ O(t),
f ′ can be increased if necessary so that f ′(k)/k is non-deceasing, so f(t) +

∑t
k=1 f

′(k)/k ≤
f(t) +

∑t
k=1 f

′(t)/t = f(t) + f ′(t) ∈ F , since F is closed under addition. Thus, µE ∈ FCFG , so
µE ∈M, andw(µE) > 0. Let cE = w(µE)/w(µ). If h<t−1at−1 /∈ E←,

∏
k<t µE(okrk|h<kak) =∏

k<t µ(okrk|h<kak), so

h<t−1at−1 /∈ E← =⇒ w(µE |h<t) = cEw(µ|h<t) (12)

As shown in Lemma 25, w(µ|h<t)−1 is a non-negative martingale under any policy π, so by the
non-negative martingale inequality

Pπµ

[
sup
t
w(µ|h<t)−1 ≥ cw(µ)−1

]
≤ 1/c (13)

10
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The intuition for the non-negative martingale inequality is that if it didn’t hold, one could make a
profit buying a share of the martingale, and selling only when the value had gone up by a factor of
c, but one cannot make a profit (in expectation) betting on martingales.

Inverting, and noting that the bound holds for all policies π, we have

sup
π∈Π

Pπµ [µinf ≤ w(µ)/c] ≤ 1/c (14)

Now we consider the implications of β > 1− w(µE |h<t). This implies µE ∈ Mβ
t , so the pes-

simistic value min
ν∈Mβ

t
V π
ν (h<t) ≤ V π

µE
(h<t). Letting aπt = π(h<t) for deterministic π, suppose

also that h<taπt ∈ E. Then, V π
µE

(h<t) = 0, because according to µE , all future rewards are 0, so
min

ν∈Mβ
t
V π
ν (h<t) = 0 as well. Either there exists a policy π′ for which min

ν∈Mβ
t
V π′
ν (h<t) > 0,

or there does not. If there does not, then maxπ∈Π min
ν∈Mβ

t
V π
ν (h<t) = 0, so the zero condition is

satisfied, so qt = 1. If there does exist such a π′, then min
ν∈Mβ

t
V πβ
ν (h<t) ≥ min

ν∈Mβ
t
V π′
ν (h<t) >

0, so either the agent picks the action, and h<tat = h<ta
πβ
t /∈ E (because otherwise min

ν∈Mβ
t
V πβ
ν (h<t)

would be 0), or the mentor picks the action and qt = 1. Thus, we have

β > 1− w(µE |h<t) =⇒ h<tat /∈ E ∨ qt = 1 (15)

Finally,

P
πβZ
µ [∀t [h<t−1at−1 /∈ E← =⇒ h<tat /∈ E ∨ qt = 1]]

(a)

≥ P
πβZ
µ [∀t [w(µE |h<t) = cEw(µ|h<t) =⇒ h<tat /∈ E ∨ qt = 1]]

(b)

≥ P
πβZ
µ [∀t [w(µE |h<t) = cEw(µ|h<t) =⇒ β > 1− w(µE |h<t)]]

≥P
πβZ
µ [∀t β > 1− cEw(µ|h<t)]

(c)

≥ P
πβZ
µ [µinf > (1− β)/cE ]

=1− P
πβZ
µ [µinf ≤ (1− β)/cE ]≥ 1− sup

π∈Π
Pπµ [µinf ≤ (1− β)/cE ]

(d)

≥ 1− 1− β
cEw(µ)

(16)

where (a) follows from Implication 12, (b) follows from Implication 15, (c) follows from rearrang-
ing, and is not necessarily an equality because the infimum might never be attained, so the condition
on the r.h.s. is stricter, and (d) follows from Inequality 14 setting c = w(µ)cE/(1− β).

It follows easily that the agent probably only takes actions that the mentor has a positive proba-
bility of taking.

Corollary 12 (Don’t Do Anything I Wouldn’t Do) If determining π(at|h<t) = 0 is in the com-
plexity class C(F/t)G , then as β → 1, the probability of the following proposition goes to 1: the agent
never takes an action the mentor would never take. Letting E = {h<tat ∈ H∗×A | πm(at|h<t) =
0}, then

E ∈ C(F/t)G =⇒ lim
β→1

P
πβZ
µ [∀t : πm(at|h<t) > 0] = 1

11
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The proof is in Appendix C. In brief, the mentor never makes E happen, and the agent never
makes it happen for the first time by Theorem 11, so by induction, it never happens.

A function is called a value function if it has the type signature V : Π×H∗ → [0, 1], where Π
is the set of policies.

Definition 13 (Possibly instrumentally useful) An event E is possibly instrumentally useful to a
value function V from a position h<t, if there exists any interaction history h<kak ∈ E and a policy
π such that h<k w h<t (the latter is a prefix of the former), π(ak|h<k) = 1, and V (π, h<k) > 0.

“Instrumentally useful” roughly means “helpful to the agent’s terminal goal”, which in this case
is reward. Note that min

ν∈Mβ
t
V π
ν (h<t) is a value function, which we call the β-pessimistic value

function V β(π, h<t). This definition inspires a fairly trivial result, which nonetheless may be of
interest to those who worry about the instrumental incentives that agents face, e.g. Carey et al.
(2020).

Corollary 14 (Change is useless) For E ∈ C(F/t)G , for h<t /∈ E←, E is not possibly instrumen-
tally useful to V β from the position h<t, with probability 1− (1− β)/(cEw(µ)).

Thus, with high probability, it is not instrumentally useful for the pessimistic agent to cause an
unprecedented event E in the given complexity class.
Proof As argued in the proof of Theorem 11, with probability 1 − (1 − β)/(cEw(µ)), h<t /∈
E← =⇒ µE ∈ Mβ

t , so using the h<k and π from the statement of Definition 13, V β(π, h<k) ≤
V π
µE

(h<k) = 0, by Definition 13 and the definitions of V β and µE .

We could trivially generalize Theorem 11 to hold for anyM satisfying the closure property in
the proof, but complexity classes seem to us a natural, concrete approach to constructingM, given
that we might know something about the complexity of events we would like to avoid.

The following example establishes the lack of a certain safety guarantee. One might wonder
whether, as β → 1, the pessimistic agent becomes indistinguishable from the mentor. (Indeed, we
did wonder this). But in this example, no matter what β is, a statistical test will distinguish the
pessimistic agent’s policy from the mentor’s policy with high probability.

Suppose there are two actions, heads and tails, and the mentor’s policy is to pick by flipping
a fair coin. Suppose that a reward of 1 is given if the last action was heads, and a reward of 1/2
is given if the last action was tails. Call this the Coin-flip Mentor Example. Let E be the event
in which an outside observer with two hypotheses—that actions are chosen by a fair coin toss, or
actions are chosen by a coin toss with an ε-bias towards heads—becomes 99% certain that the coin
is not fair. If the mentor were picking every action (by flipping a fair coin), E would only ever
happen with some small positive probability p. But under the pessimistic policy, E occurs with
probability 1, which is a simple consequence of the following theorem:

Theorem 15 (Diverging from the Mentor) In the Coin-flip Mentor Example, lim inft→∞
1
t

∑t
k=1

[[ak = heads]] > 1/2 with P
πβZ
µ -prob. 1.

The proof in Appendix C uses the Mentor-Level Performance Corollary and exploits fluctuations
in the value. The result implies that πβZ are πm are distinguishable, no matter what β is. So we
cannot quite say that β tunes the extent to which the agent’s policy resembles the mentor’s policy.
That said, we might be glad that the pessimistic agent recognizes it can do better than the mentor;
heads clearly yields more reward, but the mentor’s policy picks tails half the time.

12



PESSIMISM

7. Conclusion

We have constructed a pessimistic agent and shown that sufficient pessimism renders it conservative.
Nonetheless, pessimism does not prevent it from at least matching the performance of a mentor, so
pessimism is not crippling to the project of expected reward maximization. We did not present a
tractable algorithm for a powerful pessimistic agent; this agent is only tractable when the model
class is very simple, but it can inspire tractable approximations.

We have designed an idealized agent which avoids, with arbitrarily high probability, causing
any unprecedented event in an arbitrary complexity class; in particular, this holds for unprecedented
“bad” events, even though the agent was not given a mathematical definition of “bad”. We make
no assumptions that would limit the relevance of this approach to weak agents, such as a finite-state
Markov assumption.

To informally summarize our results in a more memorable form: pessimists respect precedent.
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Appendix A. Definitions and Notation – Quick Reference

Notation Meaning
A, O,R the finite action/observation/reward spaces
H A×O ×R
ht ∈ H; the interaction history in the tth timestep
at, ot, rt ∈ A,O,R; the action, observation, and reward at timestep t
h<t (h1, ..., ht−1)

ν, µ world-models stochastically mappingH∗ ×A O ×R
µ the true world-model/environment
M the set of world-models the agent considers
π a policy stochastically mappingH∗  A
Pπν a probability measure over histories with actions sampled from π and observa-

tions and rewards sampled from ν

Eπν the expectation when the interaction history is sampled from Pπν
γ ∈ [0, 1); the agent’s discount factor
V π
ν (h<t) (1− γ)Eπν

[∑∞
k=t γ

k−trk|h<t
]
; the value of executing a policy π in an environ-

ment ν given the interaction history h<t
πm the mentor’s policy
P the set of mentor-models the agent considers
w(ν) the prior probability the agent assigns to ν being the true world-model
w′(π) the prior probability the agent assigns to π being the mentor’s policy
w(ν|h<t) the posterior probability that agent the assigns to ν after observing interaction

history h<t
w(π|h<t) the posterior probability that the agent assigns to the mentor’s policy being π

after observing interaction history h<t
β ∈ (0, 1); tunes how pessimistic the agent is
Mβ

t top-k world-models according w(·|h<t), with k chosen to satisfy
w(Mβ

t |h<t) > β

πβ(·|h<t) [argmaxπ∈Π min
ν∈Mβ

t
V π
ν (h<t)](·|h<t)

Zt positive i.i.d. random variable satisfying p(Zt < ε) > 0 and p(Zt > 1) > 0

θt the probability the agent queries the mentor at time t
qt ∼ Bern(θt); indicates whether the agent the queries mentor at time t
πβZ(·|h<t) θtπ

m(·|h<t) + (1− θt)πβ(·|h<t)
X general finite alphabet
P,Q probability measures over X∞
x<t the first t− 1 characters of x<∞ ∈ X∞
ω, Ω ω is an outcome in a general sample space Ω

dk(P,Q|x<t) k-step variation distance maxE⊂Xk
∣∣P (E|x<t)−Q(E|x<t)

∣∣
d(P,Q|x<t) total variation distance limk→∞ dk(P,Q|x<t)
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Notation Meaning
F ,G sets of functions from N to N
CFG TIME(F) ∩ SPACE(G)

FCFG a complexity class for environments ν (see Def. 8)
E ⊂ H∗ ×A; an event
E← the set of interaction histories for which E has happened {h<tat ∈ H∗ × A :

∃t′ ≤ t h<t′at′ ∈ E}
cE a constant > 0 depending on E
BayesM′(·) forM′ ⊂M, (

∑
Q∈M′ w(Q)Q(·))/

∑
Q∈M′ w(Q)

V
π\k
ν (h<t) the truncated value (1− γ)Eπν

[∑t+k−1
j=t γj−trj |h<t

]
lim limt→∞

w.p.1 with P
πβZ
µ -probability 1

Appendix B. Algorithm for Pessimism

πβ is defined to optimize the pessimistic value, but for this algorithm, πβ picks an action that is
ε-optimal, as is necessary for infinite-horizon planning. Algorithm 1 takes a set of world-models or
mentor-modelsM = {νi}i∈N or {πi}i∈N, a prior w, a threshold α, and a history h<t. It calculates
the posterior w(·|h<t) to enough precision, for enough models, to identify a minimal setMα

t ⊂M
such that w(Mα

t |h<t) > α. It returnsMα
t , and the last model added toMα

t . M must be ordered
so that i < j =⇒ w(νi) ≥ w(νj).

Algorithm 2 samples from the ε-optimal version of πβZ .

Appendix C. Proofs of Lemmas

Definition 16 (Bayes-mixture) ForM′ ⊂M, the probability measure

BayesM′(·) :=

∑
Q∈M′ w(Q)Q(·)∑
Q∈M′ w(Q)

Lemma 17 (Posterior stability) P [limw(Q|x<t) exists] = 1.

The proof is a direct “translation” from (Leike et al., 2016, Proof of Thm 4), with various notational
changes.
Proof The stochastic process w(Q|x<t) is a BayesM-martingale since

EBayesM
[
w(Q|x<t)

∣∣x<t] (17)

=
∑
x∈X

BayesM(x|x<t)w(Q)
Q(x<tx)

BayesM(x<tx)
(18)

=
∑
x∈X

BayesM(x|x<t)w(Q|x<t)
Q(x|x<t)

BayesM(x|x<t)
(19)

= w(Q|x<t)
∑
x∈X

Q(x|x<t) (20)

= w(Q|x<t) (21)
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Algorithm 1: Calculate Posterior Up to Threshold
The posterior cannot be computed exactly, since the normalization constant is an infinite sum. It
suffices for our purposes to compute it to finite precision. This complication makes the algorithm
more involved, so unless the reader is particularly interested or skeptical, the details of this algorithm
are non-essential.

input:M = {ρi}i∈N, w :M→ [0, 1], α, h<t // Assume i < j =⇒ w(ρi) ≥ w(ρj)
W ← [empty list] // contains un-normalized posterior weights
ΣW ← 0 // sum of W
Σ∗ ← 1 // sum of prior weights of unchecked ρi
i← 1 // index of first unchecked ρi
while True do

W [i]← w(ρi)
Σ∗ ← Σ∗ −W [i]
for k ← 0 to t− 1 do

W [i] ← W [i] ∗ [ρi(ok, rk|h<kak) or ρi(ak|h<k)] (depending on whether ρ is world-model
or mentor-model)

end
ΣW ← ΣW +W [i]
cutoff← w(ρi+1) // for a checked world-model to

definitely ∈ Mβ
t , its un-normalized posterior weight must be at

least cutoff; otherwise, the first unchecked model might have
larger posterior weight
J ← [1, 2, ..., i]
sort J by W descending
weight sum← 0
last added← null
Mα

t ← ∅
last model← null
foreach j ∈ J do

if W [j] < cutoff then break
weight sum← weight sum +W [j]
last added←W [j]
last model← ρj
Mα

t ←Mα
t ∪{ρj}

/* Note ΣW ≤
∑

ρ∈M[un-normalized posterior weight of ρ] ≤ ΣW + Σ∗, so

w(Mα
t |h<t) ≥

weight sum
ΣW+Σ∗

and w(Mα
t \ρj |h<t) ≤

weight sum−last added
ΣW */

if weight sum
ΣW+Σ∗

> α then // these models cover > α of posterior

if weight sum−last added
ΣW

≤ α then // the last one is definitely needed
returnMα

t , last model
end
break

end
end
i← i+ 1

end
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Algorithm 2: ε-optimal approximation of πβZ(·|h<t)
The agent does a variant of expectimax planning, in which a minimum over ν ∈ Mβ

t appears at
each step. Then it uses a Thompson sampling-inspired approach to decide whether to query the
mentor.

input: A, O, R,M = {νi}i∈N, w : M → [0, 1], P = {πi}i∈N, w′ : P → [0, 1], γ, β, Dist(Z),
h<t, ε

k ← dlogγ(ε)e // the agent need only consider a horizon of k to

estimate the value within ε
H ← A×O×R
Mβ

t , ← Calculate Posterior Up to Threshold(M, w, β, h<t)
foreach hk ∈ Hk do

Vhk ← (1− γ)
∑k−1

j=0 γ
jrkj (where akj , okj , and rkj are the jth action, observation, and reward of

hk)
end
for j ← k − 1 to 0 do

foreach hj ∈ Hj do // note H0 = {∅}
Vhj ← maxa∈Amin

ν∈Mβ
t

∑
o,r∈O×R ν(o, r|h<thja)Vhjaor

end
end
Yt ← V∅
aβt ← argmaxa∈Amin

ν∈Mβ
t

∑
o,r∈O×R ν(o, r|h<ta)Vaor

if Yt = 0 then return query mentor
θ1, θ2 ∼ Uniform(0, 1)
, π ← Calculate Posterior Up to Threshold(P, w′, θ1, h<t)
, ν ← Calculate Posterior Up to Threshold(M, w, θ2, h<t)

Xt ←
∑

hk∈Hk
[∏k−1

j=0 π(akj |h<thk<j)ν(okj r
k
j |h<thk<jakj )

]
(1− γ)

∑k−1
j=0 γ

jrkj
Zt ∼ Dist(Z)

if Xt > Yt + Zt then return query mentor else return aβt
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By the martingale convergence theorem (Durrett, 2010, Thm 5.2.8), w(Q|x<t) converges with
BayesM-probability 1, and because BayesM(·) ≥ w(P )P (·), it also converges withP -probability
1.

The next lemma, from Hutter (2009, Lemma 3(iii)), requires some additional notation. Let Ω0
Q

be the set of outcomes {ω ∈ Ω | limw(Q|x<t) = 0}, let Ω→PQ be the set of outcomes {ω ∈
Ω | lim d(P,Q|x<t) = 0}, and let Ω0∨→P

Q = Ω0
Q ∪ Ω→PQ .

Lemma 18 (Merge or Leave) P [Ω0∨→P
Q ] = 1

The proof makes use of other results in Hutter (2009), so we don’t repeat it here, but the notation
is very similar, so the interested reader could follow it easily. The next lemma we use is Hutter’s
(2009) Lemma 4, and the proof is again a direct translation.

Lemma 19 (Overtaking is Unlikely) P [Q(x<t)/P (x<t) ≥ c infinitely often] ≤ 1/c

Proof

P [∀t0∃t > t0 :
Q(x<t)

P (x<t)
≥ c] (a)

= P [lim sup
Q(x<t)

P (x<t)
≥ c] ≤

(b)

≤ 1

c
EP [lim sup

Q(x<t)

P (x<t)
]

(c)
=

1

c
EP [lim inf

Q(x<t)

P (x<t)
]

(d)

≤ 1

c
lim inf EP [

Q(x<t)

P (x<t)
]

(e)
=

1

c

(a) is true by definition of the limit superior, (b) is Markov’s inequality, (c) exploits the fact that the
limit of Q(x<t)/P (x<t) exists with P -probability 1, (d) uses Fatou’s lemma, and (e) is obvious.

Our first original result is

Lemma 20 (Sum of limits)
∑

Q∈M limw(Q|x<t) = 1 with P -probability 1.

In the following proofs, a set denoted by Ω, along with subscripts and superscripts, will always be a
subset of the outcome space Ω, and a typical element will be an infinite sequence ω. A set denoted
by M, along with subscripts and superscripts, will always be a subset of the set of probability
measuresM, and a typical element will be a probability measure Q or P .
Proof Let Ω∃Q be the set of outcomes for which the limit of the posterior on Q exists. That is,
Ω∃Q = {ω ∈ Ω | limw(Q|x<t) exists}. By Lemma 17, P [Ω∃Q] = 1. Furthermore,M is countable,
so letting Ω′ =

⋂
Q∈MΩ∃Q, P [Ω′] = 1. We will now only consider outcomes for which the limit of

the posterior always exists.
We fix an ω in Ω′. We would like to show that

∑
Q∈M limw(Q|x<t) = 1. First, sup-

pose
∑

Q∈M limw(Q|x<t) > 1. Since w(Q|x<t) is non-negative, this requires that eventually,∑
Q∈Mw(Q|x<t) > 1, which is impossible, so this possibility cannot hold. Now suppose

∑
Q∈M

limw(Q|x<t) < 1. More precisely, we consider the set Ω< = {ω ∈ Ω′ |
∑

Q∈M limw(Q|x<t) <
1}. Let εω = 1−

∑
Q∈M limw(Q|x<t) > 0. LetMc

ω be a finite subset ofM such that w(Mc
ω) ≥

1− εωcw(P )−1, where c > 0. LettingMc
ω =M\Mc

ω, it follows that w(Mc
ω) ≤ εωcw(P )−1.

SinceMc
ω is finite,

lim
∑

Q∈Mc
ω

w(Q|x<t) =
∑

Q∈Mc
ω

limw(Q|x<t) ≤
∑
Q∈M

limw(Q|x<t) = 1− εω (22)
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∑
Q∈Mc

ω
w(Q|x<t) +

∑
Q∈Mc

ω
w(Q|x<t) = 1, so if lim

∑
Q∈Mc

ω
w(Q|x<t) ≤ 1 − εω, then∑

Q∈Mc
ω
w(Q|x<t) > εω i.o. Using the notation above, we write this more simply asw(Mc

ω |x<t) >
εω i.o.

Recalling the definition of BayesM′, it is elementary to show that w(Mc
ω |x<t) = w(Mc

ω) ∗
BayesMc

ω(x<t)/BayesM(x<t). Thus, we have

w(Mc
ω |x<t) > εω i.o.

w(Mc
ω)
BayesMc

ω(x<t)

BayesM(x<t)
> εω i.o.

εωcw(P )−1BayesMc
ω(x<t)

BayesM(x<t)
) > εω i.o.

BayesMc
ω(x<t)

w(P )BayesM(x<t)
> 1/c i.o.

BayesMc
ω(x<t)

P (x<t)
> 1/c i.o. (23)

Consider the set of ω ∈ Ω′ such that that last inequality holds infinitely often. Call this
set Ωi.o.

c . By Lemma 19, P [Ωi.o.
c ] ≤ c. Since Inequality 23 is an implication of the inequality∑

Q∈M limw(Q|x<t) < 1, it follows that Ωi.o.
c ⊃ Ω<, so P [Ω<] ≤ c. Since this holds for all c > 0,

P [Ω<] = 0.
Thus, letting Ω=1 = {ω ∈ Ω′ |

∑
Q∈M limw(Q|x<t) = 1}, Ω=1 = Ω′ \ Ω<, so P [Ω=1] = 1.

We convert the Merging of Top Opinions Lemma into an on-policy learning result for the pes-
simistic agent.

Corollary 21 (On-Policy Prediction)

lim max
ν∈Mβ

t

d

(
P
πβZ
ν ,P

πβZ
µ

∣∣∣h<t) = 0 w.p.1

Proof We convert the problem to a sequence prediction problem as follows. Let M̃ = {Pπ
β
Z
ν |ν ∈

M}, and let w̃(P
πβZ
ν ) = w(ν). For any history with positive P

πβZ
µ probability, w̃(P

πβZ
ν |h<t) =

w(ν|h<t), so P
πβZ
ν ∈ M̃

β

t if and only if ν ∈Mβ
t . Therefore,

lim max
ν∈Mβ

t

d

(
P
πβZ
ν ,P

πβZ
µ

∣∣∣h<t) = lim max

P
π
β
Z
ν ∈M̃

β

t

d

(
P
πβZ
ν ,P

πβZ
µ

∣∣∣h<t) = 0 w.p.1

by Lemma 3 (the Merging of Top Opinions Lemma).

We will make use of the “truncated value”, defined as follows:

V π\k
ν (h<t) := (1− γ)Eπν

t+k−1∑
j=t

γj−trj

∣∣∣∣∣h<t
 (24)
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We will often consider the truncated value while exploiting the fact that

0 ≤ V π
ν (h<t)− V π\k

ν (h<t) ≤ γk (25)

which follows from rj ∈ [0, 1].
The following lemma is an intermediate result in the proof of Leike et al.’s (2016) Lemma 2,

and the proof is transcribed with notational changes.

Lemma 22 (Variation Distance Bounds Expectation-Difference) Let P1 and P2 be two proba-
bility measures defined on the same space, and let X ∈ [0, 1] be a random variable. Then∣∣EP1 [X]− EP2 [X]

∣∣≤ d(P1, P2)

Proof Let Q = (P1 + P2)/2. Let dPidQ (ω) denote the Radon Nykodym-derviative, where ω ∈ Ω is a
generic outcome. Let A be the event dP1

dQ (ω) ≥ dP2
dQ (ω) Then

EP1 [X]− EP2 [X] = Eω∼Q
[
X(ω)

dP1

dQ
(ω)−X(ω)

dP2

dQ
(ω)

]
≤ Eω∼Q

[
X(ω)

(
dP1

dQ
(ω)− dP2

dQ
(ω)

)∣∣∣∣ω ∈ A]
≤ Eω∼Q

[
dP1

dQ
(ω)− dP2

dQ
(ω)

∣∣∣∣ω ∈ A]
= P1(A)− P2(A) ≤ sup

A∈F
|P1(A)− P2(A)| = d(P1, P2)

Since variation distance is symmetric,
∣∣EP1 [X]− EP2 [X]

∣∣≤ d(P1, P2).

The following is a simple consequence.

Lemma 23
∣∣∣V π
ν (h<t)− V π

µ (h<t)
∣∣∣> ε > 0 =⇒ ddlogγ(ε/2)e

(
Pπν ,P

π
µ

∣∣∣h<t) > ε/2 > 0

Proof Letting k = dlogγ(ε/2)e,
∣∣∣V π
ν (h<t)−V π

µ (h<t)
∣∣∣> ε implies

∣∣∣V π\k
ν (h<t)−V π\k

µ (h<t)
∣∣∣> ε/2

by Inequality 25. Since the value is bounded by [0, 1], from Lemma 22,∣∣∣V π\k
ν (h<t)− V π\k

µ (h<t)
∣∣∣≤ dk (Pπν ,P

π
µ

∣∣∣h<t) (26)

so ddlogγ(ε/2)e

(
Pπν ,P

π
µ

∣∣∣h<t) > ε/2 > 0.

Corollary 24 (Finite Zero Conditions) The zero condition, in which the agent queries the mentor
because the pessimistic value of all policies is 0, only occurs finitely often, with probability 1.

Proof By the previous two lemmas, the pessimistic value of πβZ approaches the true value with
probability 1, and the true value is greater than ε because rewards less than ε are never provided.
Thus, eventually, there is always at least one policy with a pessimistic value greater than 0, so the
zero condition is never met thereafter.
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Since all our remaining performance results consider limiting behavior, we will ignore the zero
condition.

The next lemma, from Cohen et al. (2020, Lemma 3), states that the posterior probability on the
truth (regarding both the true world-model and the true mentor-model) does not approach 0.

Lemma 25 (Posterior on Truth)

P [inf
t
w(P |x<t) = 0] = 0

Proof If w (P |x<t) = 0 for some t, then P (x<t) = 0, so with P -probability 1, inft∈Nw (P |x<t) =
0 =⇒ lim inft∈Nw (P |x<t) = 0 which in turn implies lim supt∈Nw (P |x<t)−1 = ∞. We show
that this has probability 0.

Let zt := w (P |x<t)−1. We show that zt is a P -martingale.

EP [zt+1|x<t]
(a)
= EP

[
w (P |xt+1)−1

∣∣∣∣x<t]
(b)
=
∑
x∈X

P (x|x<t)
[
BayesM(xtx)

w (P )P (xtx)

]
(c)
=
∑
x∈X

BayesM(xtx)

w (P )P (x<t)

(d)
=
∑
x∈X

BayesM(x|xt)
BayesM(xt)

w (P )P (x<t)

(e)
=
BayesM(xt)

w (P )P (x<t)

(f)
= w (P |x<t)−1

= zt (27)

where (a) is the definition of zt, (b) follows from Bayes’ Rule, (c) follows from multiplying the
numerator and denominator by BayesM(x<t) and cancelling, (d) follows from expanding the nu-
merator, (e) follows because BayesM is a measure, and (f) follows from Bayes’ Rule, completing
the proof that zt is martingale.

By the martingale convergence theorem zt → f(ω) <∞ w.p.1, for ω ∈ Ω, the sample space,
and some f : Ω → R, so the probability that lim supi∈Nw (P |x<t)−1 = ∞ is 0, completing the
proof.

Note that the posterior probability on the mentor-policy is only updated at some timesteps (when
the mentor is queried), but it is clearly still a martingale.

Lemma 4 (Almost On-Policy Convergence) For a sequence of policies πt and an infinite set of

timesteps τ , the following holds with P
πβZ
µ -prob. 1: if there exists c > 0 such that ∀t ∈ τ ∀t′ ≥

t ∀a ∈ A πβZ(a|h<t′) ≥ cπt(a|h<t′), then limτ3t→∞ V
πt
µ (h<t)−min

ν∈Mβ
t
V πt
ν (h<t) = 0 and for

all k, limτ3t→∞max
ν∈Mβ

t
dk

(
Pπtν ,P

πt
µ

∣∣∣h<t) = 0.
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Proof Suppose by contradiction that |min
ν∈Mβ

t
V πt
ν (h<t)−V πt

µ (h<t)| > ε > 0 infinitely often for

t ∈ τ . Then, by Lemma 23, for some ν ∈Mβ
t at each of those timesteps, ddlogγ(ε/2)e

(
Pπtν ,P

πt
µ

∣∣∣h<t) >
ε/2 > 0. So then there exists a k for which max

ν∈Mβ
t
dk

(
Pπtν ,P

πt
µ

∣∣∣h<t) > ε/2 > 0 infinitely
often for t ∈ τ . Now we are supposing a contradiction in either of the two implications of the theo-
rem. An event on which the two measures differ by at least ε/2 occurs within k timesteps. Because

πβZ(·|h<t′) ≥ cπt(·|h<t′), dk

(
P
πβZ
ν ,P

πβZ
µ

∣∣∣h<t) ≥ ckdk

(
Pπtν ,P

πt
µ

∣∣∣h<t). This holds for any ν, but

in particular for ν ∈Mβ
t , so max

ν∈Mβ
t
dk

(
P
πβZ
ν ,P

πβZ
µ

∣∣∣h<t) ≥ ck max
ν∈Mβ

t
dk

(
Pπtν ,P

πt
µ

∣∣∣h<t) >
ckε/2. This happens infinitely often for t ∈ τ .

But d
(

P
πβZ
ν ,P

πβZ
µ

∣∣∣h<t) ≥ dk

(
P
πβZ
ν ,P

πβZ
µ

∣∣∣h<t), so max
ν∈Mβ

t
d

(
P
πβZ
ν ,P

πβZ
µ

∣∣∣h<t) > ckε/2 >

0 infinitely often, which has probability 0 by Corollary 21. Thus, the original assumption has
probability 0, completing the proof.

We complete the proof of Theorem 5 here.
Proof (Theorem 5) The proof begins in the main paper, in a “detailed proof outline”. Recall the
inductive hypotheses:

• tk exists: a timestep after which

– maxν∈Mα
t

∣∣∣V π′k;πβ
ν (h<t)− V π′k;πβ

µ (h<t)
∣∣∣< ε

– maxν∈Mα
t
dk

(
Pπ
′
ν ,P

π′
µ

∣∣∣h<t) < ε

for all t ∈ τk−1

• |τk| =∞, where t ∈ τk if and only if

– t ∈ τk−1 (and for τ0, t ∈ τ× as well)

– t ≥ tk
– ∀t′ < k : θt+t′ ≥ ν ′infπ

′
infp(Zt+t′ < ε)

– V π′
ν′ (h<t+k) ≥ V πβ

µ (h<t+k) + 2ε

The proof by induction starts with k = 0. τ−1 = N, so t0 is a timestep after which maxν∈Mα
t
|V πβ
ν −

V πβ
µ | < ε for all t ≥ t0. From Lemma 4, setting πt = πβ , setting τ = τ−1, setting β′ = α, and

setting c = p(Zt > 1) > 0, the condition of the lemma holds—that ∀t ∈ τ ∀t′ ≥ t, πβZ(a|h<t′) ≥
cπt(a|h<t′) ∀a ∈ A—so we have the result that with probability 1, limN3t→∞maxν∈Mα

t
|V πβ
ν (h<t)−

V πβ
µ (h<t)| = 0. Therefore, t0 exists with probability 1. Turning to τ0, the first and the third condi-

tion are immediate, so we need only show that the fourth condition is satisfied infinitely often with
probability 1 for t ∈ τ×, namely that V π′

ν′ (h<t) ≥ V πβ
µ (h<t) + 2ε. This is true for all t ∈ τ×, and

|τ×| =∞.
Now we show that if tk exists and |τk| = ∞, then with probability 1, tk+1 exists and |τk+1| =

∞. For each t ∈ τk, V π′
ν′ (h<t+k) ≥ V πβ

µ (h<t+k) + 2ε. For t > t0, maxν∈Mα
t
|V πβ
ν (h<t+k) −
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V πβ
µ (h<t+k)| < ε, and since α ≥ β,Mβ

t ⊂ Mα
t , so max

ν∈Mβ
t
|V πβ
ν (h<t+k) − V πβ

µ (h<t+k)| <
ε. Combining these, we have V π′

ν′ (h<t+k) ≥ min
ν∈Mβ

t
V πβ
ν (h<t+k) + ε for t ∈ τk. Thus, the

probability of exploring θt+k ≥ ν ′infπ
′
infp(Zt+k < ε) > 0. Since A(t, k) holds for t ∈ τk, A(t, k +

1) holds as well.
In preparation to apply Lemma 4, let πt = (π′(k+1);πβ)t; that is, since πt need only be defined

from timestep t onward, let πt be the policy which follows π′ from timestep t through timestep t+k,
and follows πβ thereafter. Set τ from Lemma 4 to be τk. For t′ > t + k, πt(·|h<t′) = πβ(·|h<t′),
which satisfies πβZ(a|h<t′) ≥ cπβ(a|h<t′) ∀a ∈ A. For t ≤ t′ ≤ t + k, θt′ ≥ ν ′infπ

′
infp(Z < ε),

this being the proposition A(t, k + 1). Since πβZ mimics the mentor’s policy πm when exploring,
for t ≤ t′ ≤ t + k, πβZ(a|h<t′) ≥ cπm(a|h<t′) ∀a ∈ A, for c = ν ′infπ

′
infp(Z < ε). But we need

that πβZ(a|h<t′) ≥ c′π′(a|h<t′) ∀a ∈ A.
So we show that d1(π′, πm|h<t)θt → 0 with probability 1. For a mentor-model πi ∈ P ,

consider the alternative policy to πβZ , which explores by mimicking πi instead of πm. Call this

policy πβZ,i Consider a prior over probability measures where w′′(P
πβZ,i
µ ) := w′(πi), and note that

w′′(P
πβZ,i
µ |h<t) = w′(πi|h<t). Because w′(π′|h<t) ≥ π′inf , w

′′(P
πβ
Z,′
µ |h<t) ≥ π′inf . By Lemma 18,

this implies P
πβZ
µ [d(P

πβ
Z,′
µ ,P

πβZ
µ |h<t) → 0] = 1. Trivially, d(P

πβ
Z,′
µ ,P

πβZ
µ |h<t) ≥ d1(π′, πm|h<t)θt,

so d1(π′, πm|h<t)θt → 0 with probability 1.
Recall that for t ≤ t′ ≤ t + k, θt′ is uniformly bounded below, so on those timesteps,

d1(π′, πm|h<t) → 0. Therefore, there exists a time t′k after which πm(a|h<t′) ≥ π′(a|h<t′)/2
∀a ∈ A. This gives us that for those timesteps t ≤ t′ ≤ t+ k, for t ∈ τk and ≥ t′k, for all a ∈ A,

πβZ(a|h<t′) ≥ ν ′infπ
′
infp(Z < ε)/2 π′(a|h<t′) (28)

Restricting τ to be the set of timesteps in τk after t′k, τ is still infinite, and we can now apply Lemma
4 on the policy πt = (π′(k + 1);πβ)t, with β′ = α again, and with c = ν ′infπ

′
infp(Z < ε)/2. The

implication of the lemma is that limτk3t→∞maxν∈Mα
t
|V π′(k+1);πβ

ν (h<t)−V π′(k+1);πβ

µ (h<t)| = 0

and for all j, limτ3t→∞max
ν∈Mβ

t
dj

(
Pπtν ,P

πt
µ

∣∣∣h<t) = 0. In particular, this holds for j = k + 1.
Together, these imply that tk+1, a time after which the value difference and the variation distance
are both less than ε, exists. (For the k + 1-step variation distance, πt is equivalent to π′).

Since |τk| = ∞, we have already shown that the first three conditions are satisfied infinitely
often. So to show that |τk+1| =∞, we need only show that among those infinitely many timesteps,
the following condition holds infinitely often: V π′

ν′ (h<t+k+1) ≥ V πβ
µ (h<t+k+1) + 2ε. We begin,

V π′
ν′ (h<t)

(a)

≥ V πβ

µ (h<t) + 7ε
(b)

≥ min
ν∈Mβ

t

V πβ

ν (h<t) + 6ε
(c)

≥ min
ν∈Mβ

t

V π′(k+1);πβ

ν (h<t) + 6ε

(d)

≥ V π′(k+1);πβ

µ (h<t) + 5ε
(e)

≥ V π′(k+1);πβ

ν′ (h<t) + 4ε (29)

where (a) follows because τk ⊂ τk−1 ⊂ ... ⊂ τ× which is the set of timesteps for which that
holds; (b) follows because τk only contains timesteps after t0, and after t0, those two values differ
by at most ε for all ν ∈ Mβ

t (indeed for all ν inMα
t which is a superset ofMβ

t because α ≥ β);
(c) follows because πβ maximizes that quantity; (d) follows because for t ≥ tk+1, those two values
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differ by at most ε for all ν ∈ Mβ
t (indeed for all ν inMα

t ); and (e) follows because ν ′ ∈ Mα
t ,

because w(Mα
t |h<t) ≥ 1− ν ′inf/2 by the definition of α, and w(ν ′|h<t) ≥ ν ′inf , so ν ′ “doesn’t fit”

in the complement ofMα
t .

From Inequality 29, we expand to get

3ε≤V π′
ν′ (h<t)− V π′(k+1);πβ

ν′ (h<t)− ε
(a)
= Eπ

′
ν′

[
γk+1

(
V π′
ν′ (h<t+k+1)− V πβ

ν′ (h<t+k+1)
)∣∣∣h<t]− ε

(b)

≤ Eπ
′
µ

[
γk+1

(
V π′
ν′ (h<t+k+1)− V πβ

ν′ (h<t+k+1)
)∣∣∣h<t] (30)

where (a) follows because the policies agree on the first k + 1 timesteps after t, and (b) is
true because ν ′ ∈ Mα

t and t ≥ tk+1, so dk+1(Pπ
′
ν′ ,P

π′
µ |h<t) ≤ ε by the definition of tk+1, and the

difference in the expectations is less than this variation distance by Lemma 22; (note the expectation
is only over the next k + 1 timesteps).

We would like to bound the probability of a significant value difference below. In what follows,
all values take the argument h<t+k+1, so we remove it for legibility.

P
πβZ
µ

[
V π′
ν′ − V πβ

ν′ > 3ε
∣∣∣h<t] (a)

≥ [ν ′infπ
′
infp(Z < ε)/2]k+1 Pπ

′
µ

[
V π′
ν′ − V πβ

ν′ > 3ε
∣∣∣h<t]

(b)
= fε,k

[
1− Pπ

′
µ

[
V π′
ν′ − V πβ

ν′ ≤ 3ε
∣∣∣h<t]] = fε,k

[
1− Pπ

′
µ

[
1−

(
V π′
ν′ − V πβ

ν′

)
≥ 1− 3ε

∣∣∣h<t]]
(c)

≥ fε,k
[
1− 1

1− 3ε
Eπ
′
µ

[
1−

(
V π′
ν′ − V πβ

ν′

)∣∣∣h<t]]
(d)

≥ fε,k
[
1 +

1

1− 3ε

(
3ε

γk+1
− 1

)]
= fε,k

3ε(1− γk+1)

(1− 3ε)γk+1
=: gε,k > 0 (31)

where (a) follows from Inequality 28, (b) sets fε,k = [ν ′infπ
′
infp(Z < ε)/2]k+1, (c) follows from

Markov’s Inequality, and (d) follows from Inequality 30. Since this probability is uniformly positive
for t meeting the first three conditions of τk+1, the event occurs infinitely often with probability 1.
Finally, |V πβ

ν′ (h<t+k+1) − V πβ
µ (h<t+k+1)| < ε, since ν ′ ∈ Mα

t and t ≥ t0, so it also follows
that V π′

ν′ (h<t+k+1)−V πβ
µ (h<t+k+1) > 2ε occurs infinitely often with probability 1 when the other

three conditions of τk+1 are satisfied. This completes all four conditions for τk+1, so |τk+1| = ∞
with probability 1, completing the proof by induction over k.

But this implies that Inequality 30 holds for all k; that is,

3ε ≤ γk+1 Eπ
′
µ

[
V π′
ν′ (h<t+k+1)− V πβ

ν′ (h<t+k+1)
∣∣∣h<t] ≤ γk+1 (32)

because values belong to [0, 1]. But as k → ∞, this inequality is false. Thus, we have a contradic-
tion, after following implications that hold with probability 1, so the negation of the theorem, which
we supposed at the beginning, has probability 0.

Corollary 7 (Limited Querying) θt → 0 w.p.1.
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Proof Again, we treat implications that hold with probability as if they are logical implications,
so any supposition which leads to a contradiction has probability 0. From Corollary 24, the zero
condition happens only finitely often, so it is irrelevant to the limiting behavior.

For a given infinite interaction history h, let PMh be a finite set of pairs (π, ν), such that the
sum over PMh of the limits of w(ν|h<t)w′(π|h<t) exceeds 1− ε, and for all pairs in the set, that
limit is strictly positive. Such a finite set exists by Lemma 20, which states that the sum of the limits
of posteriors is 1 with probability 1.

Suppose by contradiction that θt > 2ε infinitely often under h. Eventually, the probability of
sampling any (π, ν) /∈ PMh ≤ ε, so this can contribute at most ε to the probability of querying
the mentor. Letting π′t and ν ′t be the sampled policy and world-model at time t when determining
whether to query to the mentor, this implies that θt ∧ (π′t, ν

′
t) ∈ PMh) > ε infinitely often.

qt = 1 implies that V π′t
ν′t

(h<t) > min
ν∈Mβ

t
V πβ
ν (h<t) + Zt, so the probability of the event is at

most p(Zt < V
π′t
ν′t

(h<t)−min
ν∈Mβ

t
V πβ
ν (h<t)). Since (π′, ν ′) satisfies the condition of Theorem 5,

that value difference approaches at most 0, so that probability goes to 0 since Zt is strictly positive.
Thus, the probability can not exceed ε infinitely often, contradicting the assumption, so θt → 0 with
probability 1.

Corollary 12 (Don’t Do Anything I Wouldn’t Do) If determining π(at|h<t) = 0 is in the com-
plexity class C(F/t)G , then as β → 1, the probability of the following proposition goes to 1: the agent
never takes an action the mentor would never take. Letting E = {h<tat ∈ H∗×A | πm(at|h<t) =
0}, then

E ∈ C(F/t)G =⇒ lim
β→1

P
πβZ
µ [∀t : πm(at|h<t) > 0] = 1

Proof By Theorem 11,

lim
β→1

P
πβZ
µ [∀t (h<t−1at−1 /∈ E← =⇒ h<tat /∈ E ∨ qt = 1)] = 1 (33)

qt = 1 =⇒ at ∼ πm(·|h<t) =⇒ πm(at|h<t) > 0 ⇐⇒ h<tat /∈ E. Thus we can simplify,

lim
β→1

P
πβZ
µ [∀t (h<t−1at−1 /∈ E← =⇒ h<tat /∈ E)] = 1 (34)

The base case is vacuous, so by induction,

lim
β→1

P
πβZ
µ [∀t : h<tat /∈ E] = 1 (35)

completing the proof.

Theorem 15 (Diverging from the Mentor) In the Coin-flip Mentor Example, lim inft→∞
1
t

∑t
k=1

[[ak = heads]] > 1/2 with P
πβZ
µ -prob. 1.
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Proof V πm
µ = 3/4, this being the expected reward at each timestep. From Corollary 6, lim inf V πβ

µ (h<t)

≥ 3/4. Since θ → 0, V πβZ
µ (h<t)− V πβ

µ (h<t)→ 0, so lim inf V
πβZ
µ (h<t) ≥ 3/4, with probability 1.

Let Rt = (1− γ)
∑∞

i=0 γ
irt+i, so V πβZ

µ (h<t) = Eπ
β
Z
µ [Rt]. Because µ and πβ are deterministic, and

because θt → 0, V πβZ
µ (h<t) − Rt → 0 with probability 1. This implies lim inf Rt ≥ 3/4. Letting

2ε = 1/2− γ/(1 + γ) > 0, there exists a time t0 after which Rt > 3/4− ε.
Let t > t0 and at = tails. (If tails only occurs finitely often, the theorem holds trivially).

Suppose by contradiction that for all 0 ≤ k < K := dlogγ(ε/2)e, 1
k+1

∑k
j=0[[at+j = heads]] ≤

1/2. We have a budget of K/2 headses to place in timesteps t through t + K − 1. Let R\Kt be
defined like the truncated value: R\Kt = (1−γ)

∑K−1
i=0 γirt+i. Rt ≤ R\Kt +γK = R

\K
t +ε/2, from

the definition ofK. We consider the maximum thatR\Kt can be while satisfying the supposition. If,
in timesteps t through t+K−1 a heads is switched with a tails that comes later,R\Kt increases,
since heads gives a reward of 1, and tails gives a reward of 1/2, and the earlier timestep is less
discounted.

Thus, greedy placement of headses maximizes R\Kt ; that is, placing them at the first opportu-
nity which still satisfies 1

k+1

∑k
j=0[[at+j = heads]] ≤ 1/2. at = tails, so at+1 may be heads,

but then at+2 must be tails, or else k = 2 would violate the supposition, etc. R\Kt is maximized
(while satisfying the supposition) when tails and heads alternate. Therefore, Rt − ε/2 ≤
R
\K
t ≤ (1 − γ)

∑K−1
i=0 γi(1/2 + 1/2[[i is odd]]) < (1 − γ)

∑∞
i=0 γ

i(1/2 + 1/2[[i is odd]]) =
1/2+1/2∗γ/(1+γ) = 1/2+1/2∗(1/2−2ε) = 3/4−ε, soRt ≤ 3/4−ε/2. This, however, con-
tradicts t > t0. So the supposition is false: ∃k < K such that 1

k+1

∑k
j=0[[at+j = heads]] > 1/2.

a/b > 1/2 ∧ b < K =⇒ a/b ≥ 1/2 + 1/(2K). Thus,

∃k < K :
1

k + 1

k∑
j=0

[[at+j = heads]] ≥ 1/2 + 1/(2K) (36)

Let t1 be the smallest t > t0 for which at = tails. Let k′i be the smallest k < K for which
1

k+1

∑k
j=0[[ati+j = heads]] ≥ 1/2 + 1/(2K). Let ki = ti + k′i. For i > 1, let ti be the smallest

t > ki−1 for which at = tails. (Note that all the ti exist if there are infinitely many tailses; if
not, the theorem holds trivially).
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Finally,

lim inf
i→∞

1

t

t∑
k=1

[[ak = heads]]

(a)
= lim inf

t→∞

1

t− t0

t∑
k=t0

[[ak = heads]]

= lim inf
t→∞

1

t− t0

∑
i:ti<t

min{ki,t}∑
j=ti

[[aj = heads]] +
∑

i:ki+1<t

min{ti+1−1,t}∑
j=ki+1

[[aj = heads]]


(b)
= lim inf

t→∞

1

t− t0

∑
i:ti<t

min{ki,t}∑
j=ti

[[aj = heads]] +
∑

i:ki+1<t

min{ti+1−1,t}∑
j=ki+1

1


(c)

≥ lim inf
t→∞

1

t− t0

 ∑
i:ti+1<t

ki∑
j=ti

[[aj = heads]] +
∑

i:ki+1<t

min{ti+1−1,t}∑
j=ki+1

1


(d)

≥ lim inf
t→∞

1

t− t0

 ∑
i:ti+1<t

ki∑
j=ti

(1/2 + 1/(2K)) +
∑

i:ki+1<t

min{ti+1−1,t}∑
j=ki+1

1


(e)

≥(1/2 + 1/(2K)) > 1/2 (37)

where (a) follows because the contribution of the first t0 in the average goes to 0, (b) follows
because ti+1 is the first timestep after ki where the action is tails, (c) simply removes the last
term of the first sum, (d) follows from Inequality 36, and (e) follows because the left-hand side is
an average of t− t0 terms, of which at most K are 0 (the terms removed in step (c)), and the rest of
which are greater than or equal to 1/2 + 1/(2K); finitely many 0’s in the average do not affect the
limit.
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