Fully General Online Imitation Learning

Michael K. Cohen

Marcus Hutter

Neel Nanda

Imitation

- → Optimizers that plan over the long term in an unknown environment are dangerous
- → A perfect imitation of a human is "safe" (not likely to cause an unprecedented catastrophe)
- → Perhaps a population of imitators could prevent the realization of dangerous optimizers
- → Perhaps there could be global coordination to use only imitators and "narrow" optimizers, with too little data to model what makes humans tick

Learned Imitation

- → Errors in the early stages of imitation learning could have irreversible consequences
- ightarrow Some concern about dangerousness being selected for in the errors of strong prediction algorithms 1
- → Active learning allows extremely strong error guarantees

¹Search terms: mesa-optimization; universal prior malign; inner alignment

Online Imitation Learning

- → Instead of train-then-deploy, imitator can ask what the demonstrator would do when uncertain
- → Maintain a posterior distribution over demonstrator-models
- \rightarrow Sort them
- \rightarrow Collect the top few. The n^{th} best gets collected if $post(model_n) > \alpha \sum_{i < n} post(model_i)$
- \rightarrow Each model gives probabilities over the next action
- ightarrow For each action, take the min prob. assigned by the top models
- ightarrow Sample actions with those probs; if nothing sampled, ask for help and take the action the demonstrator picks

Design Motivation

- \rightarrow Suppose the true demonstrator model is always in the top few
- \rightarrow For small enough α , we can make that arbitrarily likely
- \rightarrow a is arbitrary action; θ_q is query prob.
- $o \pi^{ ext{im}}(a \text{ w/o query}| ext{history}) \leq \pi^{ ext{dem}}(a| ext{history})$
- $o \pi^{ ext{im}}(a ext{ after query}| ext{history}) = heta_q \pi^{ ext{dem}}(a| ext{history})$
- $o \pi^{ ext{im}}(a| ext{history}) \leq (1+ heta_q)\pi^{ ext{dem}}(a| ext{history})$
- ightarrow actions are never that much more likely for imitator than for demonstrator *even in log space*
- $o \mathbb{E}\prod_{t=1}^{N}(1+ heta_q(exttt{time t}))\in O(N^2)$

(Un)bounded Cost Functions

- \rightarrow Suppose all we had was $||\pi^{\rm im} \pi^{\rm dem}||_1 \le \varepsilon$
- → What would it take for us to find that satisfactory?
- \rightarrow Bounded cost function
- \rightarrow If [bad event] has prob 0 under demonstrator, it has prob $\leq \varepsilon$ under imitator, for added cost $\leq \varepsilon C$
- ightarrow Bounded cost function is hard to justify
- \rightarrow Assume the demonstrator tries to keep bad events unlikely, e.g. bad events <10% chance, really bad events <1% chance, catastrophic events $<10^{-6}$
- ightarrow Events with 10% chance under demonstrator can only be so bad, maybe
- \rightarrow 1% events could be much worse
- \rightarrow An imitator that makes an event go from 1% to 2% way less scary than one that makes it go from 10^{-9} to 1%.
- ightarrow Recall: $\pi^{ ext{im}}(a| ext{history}) \leq (1+ heta_q)\pi^{ ext{dem}}(a| ext{history})$

Main Results

- → Events can unfold over multiple timesteps
- → **Assume:** True demonstrator is in model class
- ightarrow Let E be the event that truth always \in top models, which has prob. $\geq 1 \frac{\alpha}{\text{prior on truth}}$
- \rightarrow Let B be a possible bad event in the first t timesteps
- ightarrow As $\mathsf{P}_{\mathsf{dem}}(B)^{-1}
 ightarrow \infty$, $\mathsf{P}_{\mathsf{im}}(B \text{ and } E)^{-1}
 ightarrow \infty$ at least polylogarithmicly: $f(x) \gtrsim c \log(x)^3$
- \rightarrow $c \propto t^{-2}$, α^4
- $\rightarrow \mathbb{E}\left[\sum_{t=0}^{\infty} (\text{query prob})^3\right] \leq \\ |\mathcal{A}|\alpha^{-3} \left(\frac{24}{\text{prior on truth}} + 12\right) < \infty$
- \rightarrow Precondition lifetime with many demonstrator-chosen actions to increase "prior" on truth

AGI Safety Ideas that Use Imitation

- → Iterated Distillation and Amplification
- \rightarrow Recursive definition: IDA₀ is a rock
- ightarrow IDA $_{n+1}$ imitates the output of a human with access to two copies of IDA $_n$
- \rightarrow IDA_n imitates an organization of $2^n 1$ humans
- \rightarrow Quantilization

- ightarrow Quantilization only multiplies action probabilities by a constant factor
- \rightarrow What if the base distribution were an imitator *without* a bound on $P_{\rm im}({\rm action})/P_{\rm dem}({\rm action})$?
- ightarrow The guarantees of quantilization would lose relevance

Conclusion

- \rightarrow Querying for demonstrations during model-mismatch \rightarrow finite error bounds in imitation
- → Theoretical solution to safe imitation
- → Theoretical solution to "inner alignment failure"
- ightarrow There may be a path to powerful, safe AGI via imitation